موقع د. كمال سيد الدراوي
اساسيات الموجات فوق الصوتية - صفحة 2 356



اهلا وسهلا بك زائرنا الكريم علي صفحات منتدانا

( دكتور كمال سيد الدراوي)

عزيزي الزائر الكريم .. زيارتك لنا أسعدتنا كثيراً

ونتمني لك اطيب وانفع الاوقات علي صفحات منتدانا
موقع د. كمال سيد الدراوي
اساسيات الموجات فوق الصوتية - صفحة 2 356



اهلا وسهلا بك زائرنا الكريم علي صفحات منتدانا

( دكتور كمال سيد الدراوي)

عزيزي الزائر الكريم .. زيارتك لنا أسعدتنا كثيراً

ونتمني لك اطيب وانفع الاوقات علي صفحات منتدانا
موقع د. كمال سيد الدراوي
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

موقع د. كمال سيد الدراوي

طبي_ اكاديمي _ ثقافي _ تعليمي _ _ استشارات طبية_فيديو طبي
 
الرئيسيةالبوابةأحدث الصورالتسجيلدخول

 

 اساسيات الموجات فوق الصوتية

اذهب الى الأسفل 
انتقل الى الصفحة : الصفحة السابقة  1, 2
كاتب الموضوعرسالة
د.كمال سيد
Admin
Admin
د.كمال سيد


الحمل
النمر
عدد المساهمات : 2690
نقاط : 4494
السٌّمعَة : 9
الجنس : ذكر
علم بلدك : اساسيات الموجات فوق الصوتية - صفحة 2 910
تاريخ الميلاد : 03/04/1950
تاريخ التسجيل : 30/07/2012
العمر : 74
الموقع : السودان - سنار
العمل/الترفيه : طبيب عمومى وموجات صوتية
الساعة الان :
دعائي : اساسيات الموجات فوق الصوتية - صفحة 2 C13e6510

اساسيات الموجات فوق الصوتية - صفحة 2 Empty
مُساهمةموضوع: radiology key notes   اساسيات الموجات فوق الصوتية - صفحة 2 1342559054141الإثنين أبريل 08, 2024 7:06 pm

Ultrasound is an important technique for tomographic imaging of soft tissues. It provides images in real time and so can also be used to interrogate the movement of structures such as cardiac valves and biopsy needles and, using Doppler, the patterns of blood flow in both large and small vessels. 
Contrast agents in the form of microbubbles are invaluable in cardiology and the liver, but images are generally obtained without them and thus are not dependent on organ function. 
Elastography adds information on tissue stiffness, an extension of manual palpation. 
Ultrasound at diagnostic intensities does not cause damage to tissues and, although complete safety is difficult to prove, it can be used for ovarian follicles and in the developing fetus.
Despite its very wide application in obstetrics, cardiology, abdominal and small parts imaging, the parts of the body that can be imaged with ultrasound are limited because ultrasound does not cross tissue–gas or tissue–bone boundaries so that structures lying deeper to them are obscured. Thus, ultrasound is not generally useful for the lungs and is difficult to use in the head—except in the neonate, as the open fontanelles provide an excellent ‘window’. 
In other areas, overcoming the barrier caused by the bony skeleton and gassy viscera requires technical expertise. Ultrasound is also subject to many artefactual signals, which complicate interpretation and add to the operator skills required.
Patient acceptance is high and preparation is minimal: bladder filling is required for pelvic imaging and fasting is helpful for the gallbladder. Mobile imaging systems for theatre and emergency point-of-care use are widely available and are being miniaturised while retaining their quality, so that in the future they may become used by all medical practitioners, though training will have to be made available.
Ultrasound is the ideal technique for biopsy and interventional guidance because it operates in real time. Real-time ultrasound can be fused with previously acquired 3D CT or MR data sets to improve the precision of biopsies and tumour ablation. A position sensor then adjusts the CT or MR image to match the ultrasound slice, thus combining the strengths of each technique.


الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://dr-kamal.yoo7.com
د.كمال سيد
Admin
Admin
د.كمال سيد


الحمل
النمر
عدد المساهمات : 2690
نقاط : 4494
السٌّمعَة : 9
الجنس : ذكر
علم بلدك : اساسيات الموجات فوق الصوتية - صفحة 2 910
تاريخ الميلاد : 03/04/1950
تاريخ التسجيل : 30/07/2012
العمر : 74
الموقع : السودان - سنار
العمل/الترفيه : طبيب عمومى وموجات صوتية
الساعة الان :
دعائي : اساسيات الموجات فوق الصوتية - صفحة 2 C13e6510

اساسيات الموجات فوق الصوتية - صفحة 2 Empty
مُساهمةموضوع: radiology key notes   اساسيات الموجات فوق الصوتية - صفحة 2 1342559054141الإثنين أبريل 08, 2024 7:13 pm

Nature of Ultrasound
Ultrasound is a coherent, mechanical vibration at high frequencies. In most diagnostic applications, frequencies in the 2–20 MHz (megahertz = million cycles per second) range are used, corresponding to wavelengths of 1–0.1 mm in tissue.
Ultrasonic Transducers
Ultrasound is generated by piezoelectric materials which have the property of changing thickness when a voltage is applied across them. Lead zirconate titanate (PZT) is the most widely used. 
The piezoelectric effect derives from movements of a heavy, charged atom that is loosely bound within a complex crystal; when an electrical field is applied, the atom moves and distorts the crystal. PZT is a ceramic that is cast as a thin plate that may be disc-shaped or more usually is formed into a strip that is then sliced into several hundred tiny elements as an array, with metal electrodes on the two surfaces. 
It is polarised by heating it above a critical temperature (the Curie point, which is around 200°C) and then allowing it to cool in an electric field, a process similar to that used to polarise a magnet. 
When electrically pulsed, the crystal rings like a bell at a resonant frequency which is mainly determined by its thickness. Higher-frequency crystals are thinner and thus more difficult to manufacture. 
The piezoelectric effect is symmetrical, so that the same or a similar crystal is used as the receiver to produce small electrical signals when struck by an ultrasound wave.
The crystal is mounted in a conveniently shaped holder which contains the electrodes and any associated electronics as well as the lenses and matching layers required to improve the beam shape and enable efficient transfer of acoustic energy between the crystal and the patient (see later). The whole assembly is known as the probe or transducer.
The development of single crystal piezoelectric materials is improving the sensitivity and the bandwidth of transducers because the piezo domains are more truly aligned than in a traditional amorphous ceramic material. Manufacture is similar to silicon chip technology, seeding a molten pot of the material in a crucible and slowly cooling it to allow crystallization. The material is then machined to the required shape (usually as a multi-element array).


الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://dr-kamal.yoo7.com
د.كمال سيد
Admin
Admin
د.كمال سيد


الحمل
النمر
عدد المساهمات : 2690
نقاط : 4494
السٌّمعَة : 9
الجنس : ذكر
علم بلدك : اساسيات الموجات فوق الصوتية - صفحة 2 910
تاريخ الميلاد : 03/04/1950
تاريخ التسجيل : 30/07/2012
العمر : 74
الموقع : السودان - سنار
العمل/الترفيه : طبيب عمومى وموجات صوتية
الساعة الان :
دعائي : اساسيات الموجات فوق الصوتية - صفحة 2 C13e6510

اساسيات الموجات فوق الصوتية - صفحة 2 Empty
مُساهمةموضوع: رد: اساسيات الموجات فوق الصوتية   اساسيات الموجات فوق الصوتية - صفحة 2 1342559054141الإثنين أبريل 08, 2024 7:15 pm

Propagation in Tissue
Ultrasound travels through tissue as a beam, which, for most clinical applications, is focused to around 1 mm or less in diameter at the focal zone. 
It propagates as a sequence of compression and rarefaction waves which are transmitted by the elastic forces between adjacent tissue particles. 
The particles move in the same direction as the wave—thus ultrasound is a longitudinal wave unlike the transverse waves that occur at the surface of water where the particles move up and down as the wave travels horizontally. 
The frequency of the oscillations is inversely proportional to the wavelength ( f = c/λ, where f is frequency, c is the velocity of ultrasound and λ is the wavelength).
The way in which the ultrasound wave is transmitted varies with the strength of the elastic forces between adjacent particles (which relates to the elasticity of the tissue and thus to the velocity of ultrasound) and with the masses of the particles (which determines density). These two factors determine the acoustic impedance (Z) of the tissue (Z
ρc, where ρ is density and c is the velocity of ultrasound). When the particles are heavy, a given amount of energy is transmitted with small movements of the particles; when they are light, larger excursions occur, though it should be understood that the actual distance a particle is moved at diagnostic ultrasound intensities is less than a nanometre. 
In clinical practice, since the velocity of ultrasound in tissue is almost constant (at 1540 m s−1), changes in impedance are mainly attributable to differences in density.
The constant speed of ultrasound in soft tissues allows the depth of reflectors to be calculated by measuring the delay in the return of echoes after the ultrasound pulse has been transmitted. This is the essence of the pulse-echo method used in both ultrasound imaging and most forms of Doppler ultrasound. (Note that the position of reflectors across the imaged plane is determined in a quite different manner, by the direction in which the ultrasound beam is transmitted; see below.)


الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://dr-kamal.yoo7.com
د.كمال سيد
Admin
Admin
د.كمال سيد


الحمل
النمر
عدد المساهمات : 2690
نقاط : 4494
السٌّمعَة : 9
الجنس : ذكر
علم بلدك : اساسيات الموجات فوق الصوتية - صفحة 2 910
تاريخ الميلاد : 03/04/1950
تاريخ التسجيل : 30/07/2012
العمر : 74
الموقع : السودان - سنار
العمل/الترفيه : طبيب عمومى وموجات صوتية
الساعة الان :
دعائي : اساسيات الموجات فوق الصوتية - صفحة 2 C13e6510

اساسيات الموجات فوق الصوتية - صفحة 2 Empty
مُساهمةموضوع: radiology key notes   اساسيات الموجات فوق الصوتية - صفحة 2 1342559054141الإثنين أبريل 08, 2024 7:17 pm

Attenuation
Provided that the constituent particles of a tissue are small enough to move as a single entity, the acoustical vibrations are transmitted in an orderly and efficient manner. However, when very large molecules are involved, the vibrations become disorganised, one part of the molecule responding more or less than another. While coherent vibration is what we know as sound, chaotic vibration is heat. This loss of coherence, the most important cause of dissipation of ultrasound energy, is known as absorption and is approximately proportional to the concentration of large molecules which correlates fairly well with viscosity.
Absorption is also highly dependent on the ultrasound frequency, higher frequencies being more strongly absorbed.

For average soft tissues the loss, amounts to approximately 1 dB per cm tissue depth for each megahertz. Thus, when using a 3-MHz probe, for every 2 cm of tissue penetration there will be a loss of 6 dB, which is a halving of the pressure amplitude of the signal. 
The noise floor (produced by random vibrations in the tissue and the transducer as well as by imperfections in the electronics) lies some 60–90 dB below the peak signal; so the penetration of such a probe would be limited to about 20 cm depth and to 10 cm for a 6-MHz probe.
Ultrasound energy is also lost to the receiving transducer when it is reflected or refracted away from the returning line of sight or if the beam diverges. The total loss from all these mechanisms is called attenuation.
High-frequency ultrasound gives better resolution because of the shorter wavelength, but the frequency dependence of attenuation in tissue is the limiting factor to the maximum that can be used in any given clinical application.
 Frequencies as high as 20 MHz can be used when only a few millimetres of tissue are to be traversed, such as for examining the eye and skin and for intravascular ultrasound (IVUS). 
For superficial tissues, such as the thyroid, breast and scrotum, 10–18 MHz is appropriate. 
For the heart, abdomen and second and third tri­mester obstetrics, 3–7 MHz is optimal, while for some difficult applications, such as the abdomen in obese subjects, and for transcranial studies (most of which use Doppler), one has to resort to 1.5- or 2.5-MHz transducers. This frequency limitation can be reduced by the use of longer-duration coded transmit pulses, which essentially impose a signature on the pulse (for example, by making the frequency increase during the pulse, so-called chirp encoding). This approach allows the spatial resolution to be maintained while using longer transmit pulses and improving the sensitivity of the system to weak echoes.
Obviously a way to compensate for this rapid reduction in signal intensity is required if the image is to display similar reflectors as equal in brightness over a range of tissue depths. This is achieved by applying progressively increasing amplification (gain) to later echoes in proportion to their depth using a time-varying amplifier that is triggered when each ultrasound pulse is sent. This is the TGC (time gain compensation), an important user control that must be set to equalise the image brightness for superficial and deep structures. 
Most imaging now incorporates automatic gain and TGC correction which makes it easier to set the imaging parameters correctly.



الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://dr-kamal.yoo7.com
د.كمال سيد
Admin
Admin
د.كمال سيد


الحمل
النمر
عدد المساهمات : 2690
نقاط : 4494
السٌّمعَة : 9
الجنس : ذكر
علم بلدك : اساسيات الموجات فوق الصوتية - صفحة 2 910
تاريخ الميلاد : 03/04/1950
تاريخ التسجيل : 30/07/2012
العمر : 74
الموقع : السودان - سنار
العمل/الترفيه : طبيب عمومى وموجات صوتية
الساعة الان :
دعائي : اساسيات الموجات فوق الصوتية - صفحة 2 C13e6510

اساسيات الموجات فوق الصوتية - صفحة 2 Empty
مُساهمةموضوع: radiology key notes   اساسيات الموجات فوق الصوتية - صفحة 2 1342559054141الإثنين أبريل 08, 2024 7:27 pm

 

Different Types of Ultrasound
 
­The ultrasound that we ha­ve described so far presents a two-dimensional image, or "slice," of a three-dimensional object (fetus, organ). Two other types of ultras­ound are currently in use, 3-D ultrasound imaging and Doppler ultrasound.
Ultrasound machines capable of three-dimensional imaging have been developed. In these machines, several two-dimensional images are acquired by moving the probes across the body surface or rotating inserted probes. The two-dimensional scans are then combined by specialized computer software to form 3-D images.
3-D imaging allows you to get a better look at the organ being examined and is best used for:

  • Early detection of cancerous and benign tumors (examining the prostate gland for early detection of tumors, looking for masses in the colon and rectum, detecting breast lesions for possible biopsies).
  • Visualizing a fetus to assess its development, especially for observing abnormal development of the face and limbs.
  • Visualizing blood flow in various organs or a fetus.


­Doppler ultrasound is based upon the
Doppler Effect. When the object reflecting the ultrasound waves is moving, it changes the frequency of the echoes, creating a higher frequency if it is moving toward the probe and a lower frequency if it is moving away from the probe. How much the frequency is changed depends upon how fast the object is moving. Doppler ultrasound measures the change in frequency of the echoes to calculate how fast an object is moving. Doppler ultrasound has been used mostly to measure the rate of blood flow through the heart and major arteries


الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://dr-kamal.yoo7.com
د.كمال سيد
Admin
Admin
د.كمال سيد


الحمل
النمر
عدد المساهمات : 2690
نقاط : 4494
السٌّمعَة : 9
الجنس : ذكر
علم بلدك : اساسيات الموجات فوق الصوتية - صفحة 2 910
تاريخ الميلاد : 03/04/1950
تاريخ التسجيل : 30/07/2012
العمر : 74
الموقع : السودان - سنار
العمل/الترفيه : طبيب عمومى وموجات صوتية
الساعة الان :
دعائي : اساسيات الموجات فوق الصوتية - صفحة 2 C13e6510

اساسيات الموجات فوق الصوتية - صفحة 2 Empty
مُساهمةموضوع: radiology key notes   اساسيات الموجات فوق الصوتية - صفحة 2 1342559054141الإثنين أبريل 08, 2024 7:31 pm

The Ultrasound Machine

A basic ultrasound machine has the following parts:
  • Transducer probe - probe that sends and receives the sound waves
  • Central processing unit (CPU) - computer that does all of the calculations and contains the electrical power supplies for itself and the transducer probe
  • Transducer pulse controls - changes the amplitude, frequency and duration of the pulses emitted from the transducer probe
  • Display - displays the image from the ultrasound data processed by the CPU
  • Keyboard/cursor - inputs data and takes measurements from the display
  • Printer - prints the image from the displayed data

The transducer probe is th­e main part of the ultrasound machine. The transducer probe makes the sound waves and receives the echoes. It is, so to speak, the mouth and ears of the ultrasound machine. The transducer probe generates and receives sound waves using a principle called the piezoelectric (pressure electricity) effect, which was discovered by Pierre and Jacques Curie in 1880. In the probe, there are one or more quartz crystals called piezoelectric crystals. When an electric current is applied to these crystals, they change shape rapidly. The rapid shape changes, or vibrations, of the crystals produce sound waves that travel outward. Conversely, when sound or pressure waves hit the crystals, they emit electrical currents. Therefore, the same crystals can be used to send and receive sound waves. The probe also has a sound-absorbing substance to eliminate back reflections from the probe itself, and an acoustic lens to help focus the emitted sound waves. 


الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://dr-kamal.yoo7.com
د.كمال سيد
Admin
Admin
د.كمال سيد


الحمل
النمر
عدد المساهمات : 2690
نقاط : 4494
السٌّمعَة : 9
الجنس : ذكر
علم بلدك : اساسيات الموجات فوق الصوتية - صفحة 2 910
تاريخ الميلاد : 03/04/1950
تاريخ التسجيل : 30/07/2012
العمر : 74
الموقع : السودان - سنار
العمل/الترفيه : طبيب عمومى وموجات صوتية
الساعة الان :
دعائي : اساسيات الموجات فوق الصوتية - صفحة 2 C13e6510

اساسيات الموجات فوق الصوتية - صفحة 2 Empty
مُساهمةموضوع: radiology key notes   اساسيات الموجات فوق الصوتية - صفحة 2 1342559054141الإثنين أبريل 08, 2024 7:34 pm


Transducer probes come in many shapes and sizes, as shown in the photo above. The shape of the probe determines its field of view, and the frequency of emitted sound waves determines how deep the sound waves penetrate and the resolution of the image. 

Transducer probes may contain one or more crystal elements; in multiple-element probes, each crystal has its own circuit. Multiple-element probes have the advantage that the ultrasonic beam can be steered by changing the timing in which each element gets pulsed; steering the beam is especially important for a cardiac ultrasound. In addition to probes that can be moved across the surface of the body, some probes are designed to be inserted through various­ openings of the body (vagina, rectum, esophagus) so that they can get closer to the organ being examined (uterus, prostate gland, stomach); getting closer to the organ can allow for more detailed views.
The parts of an ultrasound machine
The CPU is the brain of the ultrasound machine. The CPU is basically a computer that contains the
microprocessor, memory, amplifiers and power supplies for the microprocessor and transducer probe. The CPU sends electrical currents to the transducer probe to emit sound waves, and also receives the electrical pulses from the probes that were created from the returning echoes. The CPU does all of the calculations involved in processing the data. Once the raw data are processed, the CPU forms the image on the monitor. The CPU can also store the processed data and/or image on disk.
­The transducer pulse controls allow the operator, called the ultrasonographer, to set and change the frequency and duration of the ultrasound pulses, as well as the scan mode of the machine. The commands from the operator are translated into changing electric currents that are applied to the piezoelectric crystals in the transducer probe.­


الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://dr-kamal.yoo7.com
د.كمال سيد
Admin
Admin
د.كمال سيد


الحمل
النمر
عدد المساهمات : 2690
نقاط : 4494
السٌّمعَة : 9
الجنس : ذكر
علم بلدك : اساسيات الموجات فوق الصوتية - صفحة 2 910
تاريخ الميلاد : 03/04/1950
تاريخ التسجيل : 30/07/2012
العمر : 74
الموقع : السودان - سنار
العمل/الترفيه : طبيب عمومى وموجات صوتية
الساعة الان :
دعائي : اساسيات الموجات فوق الصوتية - صفحة 2 C13e6510

اساسيات الموجات فوق الصوتية - صفحة 2 Empty
مُساهمةموضوع: radiology key notes   اساسيات الموجات فوق الصوتية - صفحة 2 1342559054141الإثنين أبريل 08, 2024 7:37 pm

What is the wavelength of an ultrasound?
Ultrasound is defined by the American National Standards Institute as "sound at frequencies greater than 20 kHz" (above human hearing). In air at atmospheric pressure, ultrasonic waves have wavelengths of 1.9 cm or less.
What are 4 uses of an ultrasound?
What is medical ultrasound?
One of the most common uses of ultrasound is during pregnancy, to monitor the growth and development of the fetus, but there are many other uses, including imaging the heart, blood vessels, eyes, thyroid, brain, breast, abdominal organs, skin, and muscles.
What are the four primary components of an ultrasound system?
Ultrasound waves are transmitted inside the body, and the waves reflected back by organs and tissues (echoes) are received and used to create images based on this information. Diagnostic ultrasound system comprises four main components: a transducer, monitor, operating panel and processing unit.Feb 16, 2023
Why is ultrasound safe?
Because ultrasound uses sound waves instead of radiation, it's safer than X-rays. Providers have used ultrasound for more than 30 years, and they have not found any dangerous risks.



الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://dr-kamal.yoo7.com
د.كمال سيد
Admin
Admin
د.كمال سيد


الحمل
النمر
عدد المساهمات : 2690
نقاط : 4494
السٌّمعَة : 9
الجنس : ذكر
علم بلدك : اساسيات الموجات فوق الصوتية - صفحة 2 910
تاريخ الميلاد : 03/04/1950
تاريخ التسجيل : 30/07/2012
العمر : 74
الموقع : السودان - سنار
العمل/الترفيه : طبيب عمومى وموجات صوتية
الساعة الان :
دعائي : اساسيات الموجات فوق الصوتية - صفحة 2 C13e6510

اساسيات الموجات فوق الصوتية - صفحة 2 Empty
مُساهمةموضوع: رد: اساسيات الموجات فوق الصوتية   اساسيات الموجات فوق الصوتية - صفحة 2 1342559054141الإثنين أبريل 08, 2024 7:39 pm

ESWL
Extracorporeal Shock Wave Lithotripsy
(ESWL) is the use of low-frequency, high-energy shock waves, externally sent through the skin to target kidney stones – causing the stones to break down into fragments until they become "stone dust", small enough to pass
What are the three common contraindications for ultrasound
    ESWL - Infection, stone burden greater than 2.5 cm; coagulopathies, untreated hypertension, pregnancy-ESWL.
    Magnetic Resonance-guided Focused Ultrasound Surgery (MRgFUS) - Cardiac pacemaker or other implantable devices.
Which ultrasound is most important in pregnancy?
Ultrasound scans during pregnancy - benefits, about ...
A morphology scan (also known as a 'fetal anomaly scan') is an ultrasound usually done between 18 and 22 weeks of pregnancy. It checks your baby's body organs, specifically looking at their structure and growth, their gestational age and size will also be estimated based on these measurements.



الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://dr-kamal.yoo7.com
د.كمال سيد
Admin
Admin
د.كمال سيد


الحمل
النمر
عدد المساهمات : 2690
نقاط : 4494
السٌّمعَة : 9
الجنس : ذكر
علم بلدك : اساسيات الموجات فوق الصوتية - صفحة 2 910
تاريخ الميلاد : 03/04/1950
تاريخ التسجيل : 30/07/2012
العمر : 74
الموقع : السودان - سنار
العمل/الترفيه : طبيب عمومى وموجات صوتية
الساعة الان :
دعائي : اساسيات الموجات فوق الصوتية - صفحة 2 C13e6510

اساسيات الموجات فوق الصوتية - صفحة 2 Empty
مُساهمةموضوع: radiology key notes   اساسيات الموجات فوق الصوتية - صفحة 2 1342559054141الإثنين أبريل 08, 2024 7:45 pm

What is the physics of ultrasound?
Ultrasound transducers contain piezoelectric crystals that, when electrical impulses are applied, produce mechanical sound waves at frequencies determined by the crystal's propagation speed, divided by two times the thickness of the crystal layer. The typical thickness of crystal layers is between 0.2mm and 2mm.Mar 27, 2023

What is nature of ultrasound?
Ultrasonic waves are waves of frequency above the audible frequencies of the human ear. In medical diagnostics are used ultrasound frequencies between 3 and 18 MHz

.Because the speed of sound (cs) is orders of magnitude lower than the speed of light, the wavelength (λ) of US radiation λ = cs/f in tissue higher than the frequency (f) range of interest (0.5–10 MHz) is 0.1 to 3 mm. With such small wavelengths, US beams are easily focused into very small volumes at depth.
Ultrasound is defined by the American National Standards Institute as "sound at frequencies above those audible to the human hearing (greater than 20 kHz").
In air at atmospheric pressure, ultrasonic waves have wavelengths of 1.9 cm or less
Ultrasound typically used in clinical settings has frequencies between 2 and 12 MHz..


US waves are
Typically 1 or 3 MHz. 
WAVELENGTH - this is the distance
 between two equivalent points on the waveform in the particular medium 
In an 'average tissue' the wavelength is : @ 1MHz would be 1.5mm and @ 3 MHz would be 0.5 mm.
The frequencies used in ultrasonic diagnosis are in the range of 1 to 10 MHz. The speed of sound waves in the tissues of the human body averages about 1540 m/s (close to that for water). So, the wavelength of a 1 MHz wave is about λ=v/f=1540/1∙106=1.5∙10–3m=1.5mm
6 Mhz - 6 x 10 *6/s........





 



الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://dr-kamal.yoo7.com
د.كمال سيد
Admin
Admin
د.كمال سيد


الحمل
النمر
عدد المساهمات : 2690
نقاط : 4494
السٌّمعَة : 9
الجنس : ذكر
علم بلدك : اساسيات الموجات فوق الصوتية - صفحة 2 910
تاريخ الميلاد : 03/04/1950
تاريخ التسجيل : 30/07/2012
العمر : 74
الموقع : السودان - سنار
العمل/الترفيه : طبيب عمومى وموجات صوتية
الساعة الان :
دعائي : اساسيات الموجات فوق الصوتية - صفحة 2 C13e6510

اساسيات الموجات فوق الصوتية - صفحة 2 Empty
مُساهمةموضوع: radiology key notes   اساسيات الموجات فوق الصوتية - صفحة 2 1342559054141الإثنين أبريل 08, 2024 7:46 pm

Frequencies used in USG range from 2 to 18 MHz. Frequency ( f ) is inversely proportional to wavelength ( λ ) and varies according to the specific velocity of sound in a given tissue ( c ) according to the formula: λ = c / f
What is the formula for wavelength frequency in US?
What is the formula for US waves ?
Velocity of ultrasonic waves in a medium (V):
 (V) = f x l OR Where f = is Number of cycles per second & is called frequency. Measured in 'Hertz'. Abbreviated as 'Hz'.
One Hertz is equivalent to One cycle per second l = Distance covered in one cycle is wavelength V= Velocity of Ultrasonic wave inside the medium in 'mm/s' 2.
What is the formula of ultrasound wave?
The product of the frequency (ν) and the wavelength (λ) is the velocity of the wave; that is, c = νλ. In most soft tissues, the velocity of ultrasound is about 1540 m/sec. Frequencies of 1 MHz and greater are required to furnish ultrasound wavelengths suitable for diagnostic imaging.
What is the frequency and wavelength of ultrasound?
The velocity of sound in biologic tissue is a constant at approximately 1540 meters/second. Applying a frequency of 2 MHz of ultrasound energy will result in a wavelength of 0.77 mm, whereas applying a frequency of 8 MHz of ultrasound energy will result in a wavelength of 0.19 mm.



الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://dr-kamal.yoo7.com
د.كمال سيد
Admin
Admin
د.كمال سيد


الحمل
النمر
عدد المساهمات : 2690
نقاط : 4494
السٌّمعَة : 9
الجنس : ذكر
علم بلدك : اساسيات الموجات فوق الصوتية - صفحة 2 910
تاريخ الميلاد : 03/04/1950
تاريخ التسجيل : 30/07/2012
العمر : 74
الموقع : السودان - سنار
العمل/الترفيه : طبيب عمومى وموجات صوتية
الساعة الان :
دعائي : اساسيات الموجات فوق الصوتية - صفحة 2 C13e6510

اساسيات الموجات فوق الصوتية - صفحة 2 Empty
مُساهمةموضوع: radiology key notes   اساسيات الموجات فوق الصوتية - صفحة 2 1342559054141الإثنين أبريل 08, 2024 8:08 pm

What are the modes of ultrasound?
These are:
   
A-mode: A-mode is the simplest type of ultrasound. ...
   
B-mode: In B-mode ultrasound, a linear array of transducers simultaneously scans a plane through the body that can be viewed as a two-dimensional image on screen.
   
M-mode: M stands for motion.
Basic physics for generation of US image



Brightness mode (B mode) is the basic mode that is usually used. Ultrasound waves are emitted from piezoelectric crystals of the ultrasound transducer. Depending on the acoustic impedance of different materials, which depends on their density, different grades of white and black images are produced
The speed of US : In diagnostic ultrasound imaging the speed of sound is assumed to be 1540 m/s in soft tissues ;
330 m/s in air



الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://dr-kamal.yoo7.com
د.كمال سيد
Admin
Admin
د.كمال سيد


الحمل
النمر
عدد المساهمات : 2690
نقاط : 4494
السٌّمعَة : 9
الجنس : ذكر
علم بلدك : اساسيات الموجات فوق الصوتية - صفحة 2 910
تاريخ الميلاد : 03/04/1950
تاريخ التسجيل : 30/07/2012
العمر : 74
الموقع : السودان - سنار
العمل/الترفيه : طبيب عمومى وموجات صوتية
الساعة الان :
دعائي : اساسيات الموجات فوق الصوتية - صفحة 2 C13e6510

اساسيات الموجات فوق الصوتية - صفحة 2 Empty
مُساهمةموضوع: Anatomical planes   اساسيات الموجات فوق الصوتية - صفحة 2 1342559054141الإثنين أبريل 15, 2024 6:17 pm

Anatomical planes

Introduction

Anatomical planes are imaginary planes/2D surfaces used to divide the body to facilitate descriptions of location and movement.
The anatomical position is used as a reference when describing locations of structures and movements. It is an upright position with arms by the side and palms facing forward. Feet are parallel with toes facing forward

Anatomical terms

To understand anatomical planes, it is important to be familiar with basic anatomical terms:
  • Proximal: towards the main trunk of the body
  • Distal: away from the main trunk of the body
  • Superior: upper
  • Inferior: lower
  • Superficial: near the surface of the body
  • Deep: away from the surface of the body
  • Medial: towards the midline
  • Lateral:  away from the midline

Additional terms which are more commonly used in embryology and neuroanatomy:
  • Ventral: front, anterior
  • Dorsal: back, posterior
  • Cranial: towards the head
  • Caudal: towards the ‘tail’ end





عدل سابقا من قبل د.كمال سيد في السبت مايو 11, 2024 10:31 am عدل 1 مرات
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://dr-kamal.yoo7.com
د.كمال سيد
Admin
Admin
د.كمال سيد


الحمل
النمر
عدد المساهمات : 2690
نقاط : 4494
السٌّمعَة : 9
الجنس : ذكر
علم بلدك : اساسيات الموجات فوق الصوتية - صفحة 2 910
تاريخ الميلاد : 03/04/1950
تاريخ التسجيل : 30/07/2012
العمر : 74
الموقع : السودان - سنار
العمل/الترفيه : طبيب عمومى وموجات صوتية
الساعة الان :
دعائي : اساسيات الموجات فوق الصوتية - صفحة 2 C13e6510

اساسيات الموجات فوق الصوتية - صفحة 2 Empty
مُساهمةموضوع: رد: اساسيات الموجات فوق الصوتية   اساسيات الموجات فوق الصوتية - صفحة 2 1342559054141الإثنين أبريل 15, 2024 6:45 pm

اساسيات الموجات فوق الصوتية - صفحة 2 Figure-3-4th-Digit-Laceration-1-e1635430810456
Clinical relevance: describing injuries
It is important to become familiar with anatomical terms to describe locations of bodily structures and injuries as well as for describing movements.
For example, Figure 3 shows a laceration located on the medial aspect of the 4th digit of the left hand immediately distal to the proximal interphalangeal joint


الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://dr-kamal.yoo7.com
د.كمال سيد
Admin
Admin
د.كمال سيد


الحمل
النمر
عدد المساهمات : 2690
نقاط : 4494
السٌّمعَة : 9
الجنس : ذكر
علم بلدك : اساسيات الموجات فوق الصوتية - صفحة 2 910
تاريخ الميلاد : 03/04/1950
تاريخ التسجيل : 30/07/2012
العمر : 74
الموقع : السودان - سنار
العمل/الترفيه : طبيب عمومى وموجات صوتية
الساعة الان :
دعائي : اساسيات الموجات فوق الصوتية - صفحة 2 C13e6510

اساسيات الموجات فوق الصوتية - صفحة 2 Empty
مُساهمةموضوع: رد: اساسيات الموجات فوق الصوتية   اساسيات الموجات فوق الصوتية - صفحة 2 1342559054141الإثنين أبريل 15, 2024 7:48 pm

The Sagittal plane is a longitudinal plane, dividing the body into right and left parts. These are not necessarily equal but if they are equal the plane is termed a midsagittal or median plane
 The Coronal plane is a longitudinal plane, dividing the body into anterior (front) and posterior (back) sections
 Sagittal and Coronal are also terms used to describe the sutures of the skull. The original meaning of sagittal is ‘arrow 
  and coronal means ‘crown’. It can be helpful to remember this when describing the anatomical planes
sagittal is ‘arrow (سهمي)
The Axial (or Transverse plane) is a horizontal plane dividing the body into superior (upper) and inferior (lower) sections.
Planes that are NOT parallel to any of the three planes above are termed oblique planes
  • Anatomical terms and planes help to describe locations of body structures and movements.
  • Understanding the anatomical planes enables you to correctly orientate prosections and scans (e.g. CT).
  • https://geekymedics.com/anatomical-planes/


الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://dr-kamal.yoo7.com
د.كمال سيد
Admin
Admin
د.كمال سيد


الحمل
النمر
عدد المساهمات : 2690
نقاط : 4494
السٌّمعَة : 9
الجنس : ذكر
علم بلدك : اساسيات الموجات فوق الصوتية - صفحة 2 910
تاريخ الميلاد : 03/04/1950
تاريخ التسجيل : 30/07/2012
العمر : 74
الموقع : السودان - سنار
العمل/الترفيه : طبيب عمومى وموجات صوتية
الساعة الان :
دعائي : اساسيات الموجات فوق الصوتية - صفحة 2 C13e6510

اساسيات الموجات فوق الصوتية - صفحة 2 Empty
مُساهمةموضوع: رد: اساسيات الموجات فوق الصوتية   اساسيات الموجات فوق الصوتية - صفحة 2 1342559054141الثلاثاء أبريل 16, 2024 11:59 am



الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://dr-kamal.yoo7.com
د.كمال سيد
Admin
Admin
د.كمال سيد


الحمل
النمر
عدد المساهمات : 2690
نقاط : 4494
السٌّمعَة : 9
الجنس : ذكر
علم بلدك : اساسيات الموجات فوق الصوتية - صفحة 2 910
تاريخ الميلاد : 03/04/1950
تاريخ التسجيل : 30/07/2012
العمر : 74
الموقع : السودان - سنار
العمل/الترفيه : طبيب عمومى وموجات صوتية
الساعة الان :
دعائي : اساسيات الموجات فوق الصوتية - صفحة 2 C13e6510

اساسيات الموجات فوق الصوتية - صفحة 2 Empty
مُساهمةموضوع: رد: اساسيات الموجات فوق الصوتية   اساسيات الموجات فوق الصوتية - صفحة 2 1342559054141الخميس أغسطس 15, 2024 1:09 pm



What is an ultrasound?

Ultrasound (also calledsonography or ultrasonography) 
is a noninvasive imaging test. 
An US picture is called a sonogram. 
Ultrasound uses high-frequency sound waves to create real-time pictures or video of internal
 organs or other soft tissues, such as blood vessels.
Ultrasound enables healthcare providers to “see” details of soft tissues inside your body without 
making any incisions (cuts). 
And unlike X-rays, ultrasound doesn’t use radiation.
Although most people associate ultrasound with pregnancy, healthcare providers use ultrasound
 for many different situations and to look at several different parts of the inside of your body.


How does an ultrasound work?

During an ultrasound, a healthcare provider passes a device called a transducer or probe over 
an area of your body or inside a body opening. 
The provider applies a thin layer of gel to your skin so that the ultrasound waves are transmitted 
from the transducer through the gel and into your body.
The probe converts electrical current into high-frequency sound waves and sends the waves into your body’s tissue. You can’t hear the sound waves.
Sound waves bounce off structures inside your body and back to the probe, which converts the waves
 into electrical signals. 
A computer then converts the pattern of electrical signals into real-time images or videos, which are displayed on a computer screen nearby.

What are the different kinds of ultrasounds? 

There are three main categories of ultrasound imaging, including:
    Pregnancy ultrasound (prenatal ultrasound).
    Diagnostic ultrasound.
    Ultrasound guidance for procedures.
Pregnancy ultrasound
Healthcare providers often use US (often called prenatal or obstetric US) to

 monitor you and the fetus during pregnancy.
Providers use prenatal US to:
    Confirm that you’re pregnant.
    Check to see if you’re pregnant with more than one fetus.
    Estimate how long you’ve been pregnant and the gestational age of the fetus.
    Check the fetal growth and position.
    See the fetal movement and heart rate.
    Check for congenital conditions (birth defects) in the fetal brain, spinal cord,

 heart or other parts of its body.
    Check the amount of amniotic fluid.
Most healthcare providers recommend an US at 20 weeks pregnant. This test

 tracks the fetus’s growth and development during pregnancy. This US may also 

show the biological sex of the fetus. Tell your technician if you do or do not want

 to know the sex.
Your provider may order extra scans to get answers to any questions or concerns,

 such as the potential for congenital conditions.
Diagnostic ultrasound
Providers use diagnostic US to view internal parts of your body to see if something

 is wrong or not working properly. They can help your provider learn more about

 what’s causing a wide range of symptoms, such as unexplained pain, masses (lumps) 

or what may be causing an abnormal blood test.
For most diagnostic US exams, the technician places the TXR on your skin. 

In some cases, they may need to place the probe inside your body, such as in

 your vagina or rectum.
The type of diagnostic ultrasound you have, depends on the details of your case.
Examples of diagnostic ultrasounds include:
 Abdominal US: An US probe moves across the skin of your midsection (belly) area. Abdominal ultrasound can diagnose many causes of abdominal pain.
  Kidney (renal) US: Providers use kidney ultrasound to assess the size, location and shape of your kidneys and related structures, such as your ureters and bladder.

 Ultrasound can detect cysts, tumors, obstructions or infections within or around your kidneys.
    Breast US: A breast US is a noninvasive test to identify breast lumps and cysts. 

Your provider may recommend an ultrasound after an abnormal mammogram.
    Doppler US: a special US technique that assesses the movement of materials,

 like blood, in your body. It allows your provider to see and evaluate blood flow

 through arteries and veins in your body. Doppler US is often used as part of a

 diagnostic ultrasound study or as part of a vascular ultrasound.
    Pelvic US: A pelvic US looks at the organs in your pelvic area between your lower abdomen (belly) and legs. Some of the pelvic organs include your bladder, prostate, rectum, ovaries, uterus and vagina.
    Transvaginal US: Your provider inserts a probe into your vaginal canal. 

It shows reproductive tissues such as your uterus or ovaries. 

A transvaginal US is sometimes called a pelvic US because it evaluates structures

 inside your pelvis (hip bones).
  Thyroid US: Providers use ultrasound to assess your thyroid, a butterfly-shaped endocrine gland in your neck. Thy can measure the size of your thyroid and see

 if there are nodules or lesions within the gland.
    Transrectal us: provider inserts an ultrasound transducer into your rectum.

 It evaluates your rectum or other nearby tissues, such as the prostate in people

 assigned male at birth.
Ultrasound guidance for procedures
Providers sometimes use US to perform certain procedures precisely. 

A common use of US is to guide needle placement to sample fluid or tissue from:
    Tendons.
    Joints.
    Muscles.
    Cysts or fluid collections.
    Soft-tissue masses.
    Organs (liver, kidney or prostate).
    Transplant organs (liver, kidney or pancreas).
Examples of other procedures that may require ultrasound guidance include:
    Embryo transfer for in vitro fertilization.
    Nerve blocks.
    Confirming the placement of an IUD (intrauterine device) after insertion.
    Lesion localization procedures.

What is the difference between a 3D ultrasound and a 4D ultrasound?

For US during pregnancy, the traditional US is a two-dimensional (2D) image of the fetus. 
2D US produces outlines and flat-looking images, which allows your health provider to see 
the fetus's internal organs and structures.
Three-dimensional (3D) US allows the visualization of some facial features of the fetus and

 possibly other body parts such as fingers and toes
Four-dimensional (4D) US is 3D ultrasound in motion. Providers rarely use 3D or 4D fetal US

imaging for medical purposes, though it can be useful in diagnosing a facial or skeletal issue.
 They do, however, use 3D US for other medical purposes, such as evaluating uterine polyps
 and fibroids.
While US is generally considered to be safe with very low risks, the risks may increase with
 unnecessary prolonged exposure to US energy or when untrained users operate an US machine.
 Because of this, the U.S. Food and Drug Administration (FDA) advises against getting a 3D US
 for non-medical reasons such as for “keepsake” moments or entertainment.

Who performs an ultrasound?

A doctor or a healthcare provider called an US technician or sonographer performs USs.
 They’re specially trained to operate an ultrasound machine properly and safely.
It’s important to always have your US performed by a medical professional and in a medical facility.

Test Details

How do I prepare for an ultrasound?

The preparations will depend on the type of US you’re having. Some types of ultrasounds
 require no preparation at all.
For US of the pelvis, including US during pregnancy, of the female reproductive system and of 
the urinary system, you may need to fill up your bladder by drinking water before the test.
For Abdominal US, you may need to adjust your diet or fast (not eat or drink anything except water)
 for several hours before your test.
In any case, your healthcare provider will let you know if you need to do anything special to prepare
 for your ultrasound. They may give you instructions during an appointment or when scheduling your ultrasound. 
Instructions may also be available in your electronic medical records if you use such a system.

What happens during an ultrasound?

Preparation for an US varies depending on what body part to be scanned. Your provider may
 ask you to remove certain pieces of clothes or change into a hospital gown.
Ultrasounds that involve applying the transducer (probe) over your skin (not in your body) 

follow these general steps:
  You’ll lie on your side or back on a comfortable table.
 The US technician will apply a small amount of water-soluble gel on your skin over the area
  to be examined. This gel doesn’t harm your skin or stain your clothes.
 The technician will move a handheld transducer over the gel to get images inside your body.
 The technician may ask you to be very still or to hold your breath for a few seconds to create
  clearer pictures.
 Once the technician has gotten enough images, they’ll wipe off any remaining gel on your skin
  and you’ll be done.
An US test usually takes 30 minutes to an hour. If you have any questions about your specific type of ultrasound, ask your healthcare provider.

Is an ultrasound painful?

USs that are performed externally (over your skin) are generally not painful. You won’t feel the 
sound waves that US uses. If asked to have a full bladder for the procedure, it may be 
uncomfortable.
 It may also be uncomfortable to lay on the exam table if you’re pregnant.
Ultrasounds that go inside body cavities, such as your vagina or rectum, may be uncomfortable,
 but they shouldn’t hurt.

Are ultrasounds safe?

Yes, research to date has largely shown US technology to be safe with no harmful side effects.
 US doesn’t use radiation, unlike some other medical imaging tests, such as X-rays and CT scans.
Still, all US should be done by a professional who has training in using this specialized 
technology safely.

Results and Follow-Up

When should I know the results of my ultrasound?

The time it takes to get your results depends on the type of ultrasound you get. In some cases,
 such as prenatal US, your provider may analyze the images and provide results during the test.
In other cases, a radiologist, a healthcare provider trained to supervise and interpret radiology 
exams, will analyze the images and then send the report to the provider who requested the exam.
 Your provider will then share the results with you or they may be available in your electronic medical record (if you have an account set up) before your provider reviews the results.

What conditions can be detected by ultrasound?

Ultrasound can help providers diagnose a wide range of medical issues, including:
Abnormal growths, such as tumors or cancer.
    Blood clots.
    Enlarged spleen.
    Ectopic pregnancy (when a fertilized egg implants outside of your uterus).
    Gallstones.
    Aortic aneurysm.
    Kidney or bladder stones.
    Cholecystitis (gallbladder inflammation).
    Varicocele (enlarged veins in the testicles).
What questions should I ask my healthcare provider about my ultrasound?
If you need an ultrasound, you may want to ask your provider the following questions:
    What type of ultrasound do I need?
    What should I do to prepare for my ultrasound?
    Do I need any other tests?
    When should I expect to get test results?
A note
Ultrasounds are common, safe and effective imaging tests. Make sure you get an ultrasound from a well-trained professional (sonographer) who understands how to use this technology properly. If you have any questions about your specific ultrasound test, talk to your healthcare provider. They’re available to help.
 https://my.clevelandclinic.org/health/diagnostics/4995-ultrasound


الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://dr-kamal.yoo7.com
 
اساسيات الموجات فوق الصوتية
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 2انتقل الى الصفحة : الصفحة السابقة  1, 2
 مواضيع مماثلة
-
» ULTRASOUND الموجات فوق الصوتية
» ULTRASOUND -- الموجات فوق الصوتية
» مقدمة تعريفية عن الموجات فوق الصوتية
» اساسيات مرض السكرى

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
موقع د. كمال سيد الدراوي :: التعليم الطبي :: الموجات فوق الصوتية-
انتقل الى: